Simulation GUI Demo

Fei Wang, 9/5/2019

Two directions, two components

• The von Mises probability density function for the angle *x* is given by:

$$f(x \mid \mu, \kappa) = rac{e^{\kappa \cos(x-\mu)}}{2\pi I_0(\kappa)}$$

where $I_0(\kappa)$ is the modified Bessel function of order 0.

von Mises distribution, wikipedia, https://en.wikipedia.org/wiki/Von_Mises_distribution

• For Component 1:

$$f(x \mid \mu, \kappa) = rac{e^{\kappa \cos(x-\mu)}}{2\pi I_0(\kappa)}$$

$$R_1(heta_1) = A_1 + B_1 e^{C_1[cos(PD - heta_1)]}$$

• For Component 2:

$$R_2(heta_2) = A_2 + B_2 e^{C_2[cos(PD - heta_2)]}$$

PD represents angle *x* in the former slide.

• The model:

 $egin{aligned} R_1(heta_1) &= A_1 + B_1 e^{C_1[cos(PD- heta_1)]} \ R_2(heta_2) &= A_2 + B_2 e^{C_2[cos(PD- heta_2)]} \end{aligned}$

• The model:

$$egin{aligned} R_1(heta_1) &= A_1 + B_1 e^{C_1[cos(PD- heta_1)]} \ R_2(heta_2) &= A_2 + B_2 e^{C_2[cos(PD- heta_2)]} \end{aligned}$$

Initial settings

- Total trials: The number of trials.
- Center angle: The angle that a neuron is most sensitible to.
- Separation: The angle between the first component and the second.
- Num of blocks: It is only used to verify whether the fitting parameters follow the Gaussian Distribution.

• Parameters

$$R_1(\theta_1) = A_1 + B_1 e^{C_1[\cos(PD - \theta_1)]}$$

$$R_2(\theta_2) = A_2 + B_2 e^{C_2[cos(PD - \theta_2)]}$$

Weighting

- Three parameters are generated by setting the mean value and the variance of a Gaussian Distribution.
- w_1 , w_2 , b: Mean value of the parameters.
- std₁, std₂, std_b: Standard deviations respectively.

$$R(\theta_1, \theta_2) = \boxed{\omega_1} \cdot R_1(\theta_1) + \boxed{\omega_2} \cdot R_2(\theta_2) + \boxed{b} \cdot R_1(\theta_1) \cdot R_2(\theta_2)$$
Weighting Parameters

Initial settings			
Total trials =		50	
Center(deg) =		0	
Separation =		60	
Num of Blocks =		100	
Paran	neters	;	
A1 = 0	A2	= 0]
B1 = 5	B2	= 7]
C1 = 2	C2	= 2]
Weig	phting		
w1 = 0.5	std1	1 = 0	
w2 = 0.5	std2	2 = 0	
b = 0.01	stdb	0 =	
No	ise		
m1 = 0	ff1	= 1	
m2 = 0	ff2	= 1	
von Mise	es fun	ction	

• Noise

- Noise added on R_1 , R_2 by setting the mean value and the variance of a Gaussian Distribution.
- m_1 , m_2 : Mean values of the parameters.
- ff₁, ff₂: Coefficients of variation respectively.

$$ff_1=\sigma_1^2/\mu_1 \ ff_2=\sigma_2^2/\mu_2$$

Initial settings			
Total trials	= 50		
Center/de	g = 0		
Delta thet	a = 60		
Estimate time	es = 100		
Parameters (Ne	ear: 1, Far: 2.)		
A1 = 0	A2 = 0		
B1 = 5	B2 = 7		
C1 = 2	C2 = 2		
Weighting (Nea	ar: 1, Far: 2.)		
w1 = 0.5	var1 = 0.03		
w2 = 0.5	var2 = 0.03		
b = 0.01	var3 = 0.01		
Noise (Ne	ar: 1, Far: 2.)		
m1 = 0	ff1 = 1		
m2 = 0	ff2 = 1		
von Mises	function		

- Display Mode
- Change the display mode.
- Left R1 right R2 (Default)
- Left R2 right R1
- Single R1
- Single R2

• Reference line

• Always plot the R_{12} whose w_1 and w_2 are all set to 0.5 and b equals zero to show the reference.

• Grid on

- Check the box to put on grid;
- Deselect the box to put the grid off.

- Interval
- Change the interval to make the points densier.

- Axis
- Select the axis of different firing rate.
- R1 is always the blue one and R2 the green.
- R12 is the red curve.

• Press this button to plot

von Mises function

Step 3: Show the results

Results

- Peak Value: the maximum values.
- STD deviation: standard deviation
- Separation: angle between θ1(θ2) and the average of θ1 and θ2. Note that the separation of R12 means the angle between θ1 and θ2
- Bandwidth: threshold = 1/2 * max

Results an	d Verification	ו		
	R1	R2	R12	
Peak value	37.3612	51.4645	56.9505	
STD deviation	2.7228	2.8006	2.9041	
Separation	-30	30	0	
Bandwidth	80	80	80	
Verify(Gaussian)	0	0	0	
	w1	w2	b	
Setting mean	0.5000	0.5000	0.0100	
Fitting mean	0.4694	0.4845	0.0120	
Setting var(std)	0.0300	0.0100	0.0050	
Fitting var(std)	0.0268	0.0100	0.0046	
Verify(Gaussian)	0	0	0	

Show Results

Step 3: Show the results

• Results: Verify

- Fitting mean value and varience (std) of w1, w2, b.
- Comparison of original settings.
- 0 means that the rates or parameters are conform to Gaussian Distribution, 1 means not.

Results and Verification			
	R1	R2	R12
Peak value	37.3612	51.4645	56.9505
STD deviation	2.7228	2.8006	2.9041
Separation	-30	30	0
Bandwidth	80	80	80
Verify(Gaussian)	0	0	0
	w1	w2	b
Setting mean	0.5000	0.5000	0.0100
Fitting mean	0.4694	0.4845	0.0120
Setting var(std)	0.0300	0.0100	0.0050
Fitting var(std)	0.0268	0.0100	0.0046
Verify(Gaussian)	0	0	0

Show Results

Step 4: Save

Save the data

- Type the file name and save as a struct in a MATLAB document.
- Duration is used to calculate the spikes number in the time period.

Save		
Duration(ms) =	600	
Filename	my_data_1.mat	Save Data
Filename	my_figure_1.png	Save Figure
i nename	my_ligure_1.phg	Save Figure

• Save the figure

- Type the file name and save as picture in a MATLAB document.
- Currently it supports only PNG, but other image formats will be added

Thank you!